COMPUTERS IN EDUCATION

R. Lewis & D. Tagg (editors)
North-Holland Publishing Company
© IFIP, 1981

Program construction with abstract notions in ELAN

Katholieke Universiteit Nijmegen, Afd.

T¢

Karl Kleine

Id, 6525 ED Nij The Netherland:

Stefan Jahnichen, Wilfried Koch
Technische Universitit Berlin, FG Softwaretechnik, TEL18, Ernst-Reuter-Platz 7, 1 Berlin 10, West Germany

Giinter Hommel
G M D, Postfach 1240, 5205 St.Augustin 1, West Germany

Verballzauon is a key factor in problem solvmg with

progr ic progr

pecially in the initial hi

P

g of sy

of the construction of abstract algorithms in terms of other

algorithms, types and objects by a composition and decc

process involving control structures and data

structures. In this paper, we advocate the use of refinements as a facility for the naming of small program
fragments and retaining these names in the final program text. They are considered significant for the
understanding of the program, as they rep small i | abstraction steps created on the fly during
program development. This approach suitably supplements large scale abstraction means such as abstract data

types.

These ideas have been i ted in the ed

ional progr

P

guage ELAN; experiences of four years

of its use in teaching at secondary school and university entry level are presented.

1. Introduction

Problem solving and programmmg cannot be separated in
the initial i and the li ic facilities
of the programming language play a major role, in particular
its abstraction facilities. Their discussion in recent years
mostly d d the pt of ‘abstract data types’, as
pioneered by [1]. The current emphasis on the data aspect
implies an ‘abstraction granularity’ necessary for
‘programming in the large’, but neglects concepts for
algorithmic abstraction useful for ‘progamming in the small’.
Algorithmic abstraction on a small scale and its relation to
construction h will be d in the next chap
Deficencies in ilable 1 ge support concerning both
data abstraction and algomhmlc abstraction lead to the design
and implementation of ELAN (2], which will be pr d

g of progr

To produce a probl lution on a , the
occurring in the model must be represented in lhe terms of
some wmpunng machmery. i.e. appear as program text in
some progr As an ill i ider a
computer snmulau'on of a physics experiment, e.g. the free fall.
Notions like ‘current velocity’ and ‘a time step’ are most likely
to find their way into the final text of the computer program as
a variable and some loop body respectively. In the g 1
case, several intermediate realization steps will be necessary to
construct such notions as 'a time step’ out of more primitive

b g a new state of

ones, e.g. a of
the physical system modelled. These stcps of creating
realizations for notions are usually quite small, and often even
so small that they are barely recognized as such (and
verbalized and put to paper), but are immediately mentally

ded by lizati using some constructs of the

next. We close with a summary of experiences of four years of
its use.

2. Program construction with abstract notions

Program construction is only a part of what we are really
interested in, problem solving. Seen in this larger context, a
model of the application is the ial result of problem
analysis. In an educational setting, and especially in the first

to progr g, the dels are simple and easily
grasped funhcrmore much guidance is provided by the
instructor on the application modelling.

43

language at hand.

In contrast to the purely constructive approach pursued in
most programming languages supporting this policy of in situ
realization, our aim is to lay down the whole problem solution
in the program text, which includes the notions we concclvc in
the process of constructing it. Therefore, i
facilities must be provided in programming languages, for
identifying concepts beyond the primitive entities offered by
them, like say integer variables. Such naming constructions
should be extremely easy to use and should permit tagging any
constructed entity with a suitable name. Names thus created
can again be used for the construction of new ones using the
construction mechanisms of the underlying programming

4 K. Kieine et al.

language. Local programming in this manner results in many
rather short and easily surveyable definitions. Deeply nested
control structures are absent; though ‘structured’, programs
using a block nesting style have a tendency to lose the
significance of the blocks to the problem solution and to
obscure the meaning of their parts, as their understanding is
hampered by the permanent detail level jumping along wnh

elsewhere, e.g. in [4] and [5], so we can remain brief here. It
should however be pointed out that hiding facilities are much
less crucial than naming facilities, since conventions can help
for tasks upto a certain critical size.

After this discussion of the naming, grouping, and hiding
aspects, we can classify two kinds of abstraction in

the indentation level. In the approach to prog

advocated here and in [3] conceptual units are not realized i in
situ as ¢.g. nested blocks, but are given names and defined
next to the one in which they are used. It is our claim that the
creation of notions for the computational steps to be taken is
the fundamental step to the overall composition of a program,
and thus their verbalization and piecewise construction should
correspond very closely. For this reason the notions conceived
should appear in the final program text; the clerical work of
inserting realizations for their names is to be left to a compiler.

This all sounds like re-invention of the well-known
top-down stepwise refi hodology, but there is more
to it: In the first place, there i 1s no appropriate support for it in
nearly all) ilabl Evenifap
applied the meth "‘gymavexy ipli manner,the
notions ived during progr lop will mostly be
lost; it is possible to give suitable names to data objects, put in
some comments for major blocks of code, and even misuse
procedures to some end, but these are all only patches that
alleviate the problem, but do not solve it. In the following we
will demonstrate a language construct called refinement as a
solution to these practiul difficulties. In the second place,
wpdawn development is a good guideline for initial

of Actual program construction may
follow it, or some other development strategy, but will for a
major part consist of revisions of earlier decisions and their
implementation. At this point the significance of explicit
creation of names for constructions of convenient size comes
up again; they are much more easily handled than any
realization on a more concrete level. The messy structure of
many programs is largely due to many revisions that were
necessary on an excessively detailed program text.

We can propagate devel hodologies, but we
cannot hope for the final product the program text, to mirror
the process of its creation; instead we have to tumn to the
structure of the result. If we can see the abstract notions in the
text itself and their stepwise refinements and construction, we
will have some confid that this program is a solution to
our problem at hand. In this respect, the way in which the
program was constructed and the deviations taken during its
construction are of minor importance.

As problems tackled get larger, conceptual grouping of
entities will be necessary, soon followed by the need for
encapsulation and imposition of restrictions. This leads to the
concept of hiding of realization details. Whereas in the
preceding paragraph we abstracted from constructions to
retain the notions we conceived on the fly, we now identified
some major abstraction step in which the notions are
qualitatively quite different. They are much more worthy and
constructed separately. This has been elaborated extensively

PrOg! 5

weak abstraction
Naming is employed for the sake of identification of
significant construction steps or modelled objects,
and retaining notions in the program text that were
conceived in the problem solving process. Such
names simply stand for their realizations with all the
properties thereof.

strong abstraction
Applying the hiding principle, a name used in a
context different from the one of its realization
appears to have other properties than the entities
from which it is constructed.

Both weak and strong abstraction are needed, but their use is
y: Their intended use is for local and global
programmmg respectively.

3. Consequences for the design of an educational
language

A programming language to be used in (initial) education
has to support all the phases in the problem solving process.
As it is simply impossible to introduce and use more than one
language or notation, the constructs offered must be dedicated
not only to the phase of coding, but also to the phases of
modelling and concretizing the model into terms of the
underlying abstract machine (the primitve algorithms and
objects of the language).

Therefore, right from the beginning we need ing
constructs to support weak abstraction for

® type synonyms to introduce names specific to the
model, e.g. weights realized by integers, and names for
data compositions like arrays of some type;

® data objects for giving names to variables and constants
that express their purpose; and

® algorithms for naming program parts, based on
syntactically self-contained units of the programming
language (like loops, conditionals, and expressions),
and for (parametrized) procedures and operators.

To solve more complex problems the separation of
program parts must also be supported. We would like to stress
here that explicit constructs for strong abstraction are essential
if we want to cope with substantial problems of complexity
beyond a simple sorting routine.

Program Construction with Abstract Notions in ELAN 45

The strong abstraction facilities desired for a language are:

® Modules as (static) encapsulation construction hiding
all its constituents, except those made public in an
explicit interface.

® Algorithms (procedures and operators) defined in a
module and made public offer their parameter pack as
only communication interface; their algorithmic
realization remains hidden.

® Data types: New variables and constants of an abstract
data type can be dcclared outside a defining module.
These new objects can, h , only be ipulated
with algorithms provided together with the type, as the
structural composition of that type is hidden in the
defining module.

The design of yet her progr ing lang must be
considered a major offense for every computer scientist these
days. Yet, none of the languages available appeared really
suitable for our aims, in particular naming was not sufficiently
supported without other penalties. So ELAN was born in
1974. To realize the abstraction means wanted in a
programming language for educational purposes, we had to
limit ourselves in the diversity of possibilities. The overall
guidance was simplicity, both in learning and teaching.

4. ELAN and its abstraction mechanisms

ELAN is an expression language in the Algol heritage.
Instead of block-structure there are static, non-nested modules
with interfaces; the only ranges are local, within a module, and
universal. Actual design decisions of particular interest are
reported in the following by way of examples which hopefully
are selfexplanatory. For further details the reader is referred
to the language description [2].

A good example for the use of recursion and the principle
of backtracking is the search for the shortest path of a mouse
through a maze looking for a tasty piece of cheese. For sake of
simplicity we will only determine the length of the path here,
not the path itself. The data structure used is a simple

lar maze lized by a two-dimensional array of
fields, whlch in turn are integers used as marks.

LET rows = 10, columns = 10;
LETFIELD = INT;

ROW rows ROW columns FIELD VAR maze;

The fields may be occupied by barriers, a piece of cheese, or a
mark for an already visited field. We introduce some
synonyms for arbitrary valued markings:

LET barrier = 9, cheese = 7, free = 3, visited = 5;

These considerations on the data structure might also be
delegated to the definition of an abstract data type MAZE
using the strong abstraction mechanisms of ELAN, as shown
later. This approach, however, often turns out to be
inappropriate for many of the small examples we use for

d

as they b much too bulky for their
purpose. C i to data str has to go hand in
hand with the design of algorithms, and in this particular
example we have to decide now on the parametrization of the
central search routine which we have in mind.

With these preli ies, we can develop the main line of
the program straightforward in classical top-down style (we
had of course first to think of how to solve the problem in
general and come up with the idea embodied in distance
from):

build the maze;

INT CONST infinite path length :: rows ® columns;
INT VAR start row, start col, path length;

get the startposition;

path length := distance from (start row, start col);
report path length.

This is a complete algorithm, though unfortunately not yet
executable. Each sub-algorithm is described only by its name,
but that's the key factor: We have to refine these names by
more concrete algorithms and objects, until we finally employ
only such ones that are provided (as standard) in the language.

For this purpose ELAN has the language oonstruct

T in the hopefully most obvi form p

build the maze:
INT VARI, j;
FORi FROM 1 UPTO rows REPEAT
TEXT VARline;
get(line);
FOR j FROM 1 UPTO columns REPEAT
mazeli](j] := field marking
ENDREPEAT
ENDREPEAT.

field marking:
TEXT CONST field image :: text{line, 1, j);
IF field image =" “ THEN free
ELIF field image = "C” THEN cheese
ELSE barrier
ENDIF.

get the startposition:
put(“enter startpos (row, col)*);
getistart row); get(start col).

report path length:
IF path length < infinite path length
THEN put(path length); put(” steps to the cheese”)
ELSE put("Sorry, no path”)
ENDIF.

A remark on variables and constants: ELAN uses the concept
of accessright for data objects both for declared objects and
for routine parameters. An accessright of VAR implies the
right to assign a value to that object anywhere in its range,
whereas CONST objects may be initialized only in their
declarations. Because declarations are executed, the value of a
ELAN constant may be different every time after its
declaration is re-executed (see field image in refinement field
marking). The same philosophy applies to routine
parameters, where the accessright is specified for the formal
parameters.

The next algorithm is parametrized, and to be applied
ively as the of our solution. As the refi

45 K. Kleine et al.

demonstrated above do not have a local data area, but share
the one of their environment, and are furthermore not
recursively usable, we now need the more powerful concept of

procedure:

INT PROC distance from (INT CONSTr, c):
IF bad field
THEN infinite path length
ELIF cheese found
THENO
ELSE mark this field;

via all neig
unmark this field;
minumum of all distances + 1
ENDIF.

bad field:
IF field out of maze
THEN true -
ELSE mazelr][c] = barrier OR maze[r][c] = visited

A.

field out of maze:
r<10Rr>rows ORc<10Rc>columns.

cheese found:
maze|r][c] = cheese.

mark this field:
mazelr[c] := visited.

i via all neighb:
INT CONST northern path :: distance from (r—1, ¢),
eastern path :: distance from (r, c+1),
southern path :: distance from (r+1, c),
western path :: distance from (r, c—1).

unmark this field:
maze(r]c] ;= free.

minimum of all distances:
INT VAR minimum :: northern path;
minab (minumum, eastern path);
minab (minumum, southern path);
minab (minumum, western path);
minimum.

ENDPROC distance from

Again we used refinements for the realization of the

procedure body. Please note that refinements share the

context of the range they appear in, i.c. the main program, or

the body of the (recursive) procedure, respectively. There is

no penalty for their use, as their code is inserted by the
piler at their applications (no call overhead).

L

Except for a little routine minab this example is complete.
It's purpose was a demonstration of weak abstraction
mechanisms and their use in ELAN:

e the naming of algorithms like refinements and
procedures,

® synonyms for constant values,

® the introduction of a type synonym, without the

bulkiness Of the full abstract type definition
mechanism.

On the side of strong abstraction ELAN offers static

modules (called packet) as visibility units and abstract data
types. A fragment of a packet to define dates as an abstract
data type will show the essentials:

PACKET dates
DEFINES DATE, date, today, +, text, day, month, year :

TYPE DATE = STRUCT(INT d, m, y);

DATE PROC date (INT CONST day, month, year):
{ a denotation procedure for dates in the program text }
IF NOT valid date(day,month,year) THEN errorstop Fl;
DATE:(day, month, year)
ENDPROC date;

TEXT PROC text (DATE CONST day):

text(day.d) +“—" + [day.m] + "—" +
ENDPROC text;

ROW 12 TEXT CONST month names ::
("JAN", "FEB", "MAR", "APR", "MAY", JUN",
"JUL", "AUG", "SEP”, "OCT", "NOV", "DEC");
DATE OPERATOR + (DATE CONST d, INT CONST days):

d +[days,0,0]
ENDOPERATOR + ;

DATE OPERATOR + (DATE CONST d, ROW 3 INT CONST diff):

{ form new date as date after diff[1] days,
diff(2) months, and diff(3] years }

ENDPACKET dates

Some points of interest:

® The new abstract data type DATE is different from all

other types, including those with the same representation.
Outside the dcﬁmng packet, objects of this type can only
be ipulated via the p d and operators defined

along with it in the same packet. Within a packet the
representation is accessible via subscription and selection.

Procedures and operators are generic, i.e. there may be
many operators + or procedures text, which are identified
not only by their name, but also by the number and types
of their parameters. Operator indicants, e.g. the name +,
bear uniformly the priority of the standard operators, so
that there can be no confusion in the mind of the reader
about relative priorities of operators, as is possible in
Algol68. Generic algorithms allow uniform treatment of
standard activities, like e.g. printing of items of any type.

The proper use of denotation procedures like date in the
example above allows a nice regular style of programming
with abstract data types. The constructor used within that

procedure forms an object of appropriate type out of

the elements of its fine structure,

Data objects declared on packet level, like month names,
are global to all procedures and operators of this packet.
They are all d statically, and are initialized at begin of
program i The classical probl of hidden
variables, e.g. the seedvalue of a pseudo-random
generator, can thus be easily implemented.

Program Construction with Abstract Notions in ELAN 47

e Only types, procedures, operators and constants can be
made public in the DEFINES interface. For methodological
reasons, variables and synonyms are excluded from being
freely propagated. Several abstract types can be defined by
one packet; the issues of modularity and data types are
decoupled in ELAN. Algorithmic and data abstraction are
supported equally.

® Packets can be compiled separately and can be put into a
library. Once so compiled they can be used in any other
ELAN program. The standard types in the languag

6. Classroom experiences with ELAN

The following notes summarize the authors’ experience in
introductory programming courses, mainly for students in
computer science in their first year at TU Berlin. Similar
results are reported from other places where ELAN in used.

The most striking experience in using ELAN is the ease
with which a number of programming concepts can be
introduced. This is largely due to the use of refinements: New

lly include those defined by precompiled
packets You may think of your program as a sequence of

putational patterns, ¢.g. various loop constructions, can
be presented in a rather minimal form; that is to say the
consmuents (e.g. a loop body) are just again refinement

card decks, only the last one(s) are yours, submitted for

ilation and ion now. The names made public
by a packet in its interface are known to all others
following it. This scheme is certainly not suitable for large
programmmg tasks, but it 1s simple and ad for

. The clear form of these patterns without much
nolse like say index calculations, is of major help teaching
and understandmg them. The necessary details are simply
delegated to refi definitions to be filled in later. This

q
dul

progr

5. Status of ELAN

ELAN implementations exist on IBM /370,
SIEMENS 4004 and 7.000 series, TR440, and Z80 (the latter
amulti-user ELAN system, called EUMEL), originating from
the University of Bielefeld. An P ation for
NIXDORF 8870 is under construction, and versions for
PDP11 and VAX are planned for the near future. A portable
interpreter for an ELAN subset on microcomputers has been
developed at the KU Nij as a repl for BASIC,
and is running on PDP11 and the Apple-II hobbycomputer.

ELAN has been used successfully since 1976 at many
plaoes in Germany, most notably at a number of secondary
hools, for the ed of school hers in informatics
(PH Berlm University of Blelefeld) for university entry level
g (basic p at Berlin Technical
Umvemty use it regularly since 1978), and in introductory
programming courses at the GMD (Geselischaft fiir
Mathematik und Datenverarbeitung, a federal German
research and education facility).

ELAN and Pascal-E have been approved officially by a
committee (Arbeitskreis Schulsprache (ASS)) of the German

pproach not only applies to the basic patterns provided by the
language in the form of control structures, but also to more
advanced ones, like the steps of a backtracking algorithm, as
demonstrated in the previous section.

This smooth introduction of ional patterns on a
small scale (each refinement is about 3 to7 lmes Iong) allows a
shift of emphasis from hing a progr with
all the assoc:ated dctanls (symax, consu'ucnon rules) to

Progr g style evolves
natu:ally, wc nccd not prcss the issue based on abuse of
syntactic constructions, but can treat it semantically, focussing
on structuring the algorithm by refinements and on
verbalization.

Besides this qualitative gain, there is a quantitative one:
The total amount of material covered is about 30 percent more
than in previous courses, in which we used languages of the
Algol family.

The introduction of procedure declarations with all their
bells and whistles requiring explanation (p , local and
global ranges, recursion) can be postponed for quite some
time. They are actually introduced only near the end of a first
semester. For top-down programming, refinements are more
appropriate. Even elementary data structures (row and
structures) are introduced prior to procedures.

Module structure (packets) are introduced relatively soon
after procedures, usually in the first third of a second

Federal Ministry for R h and Technology (BMFT) for
use in computer science education, and are ded as
the only official languages for teaching at secondary school
level in Germany.

The experiences with ELAN and especially with its

refinement concept have been so good that refinement

for other | (Algol68, FORTRAN, and

COBOL) were constructed. At the Catholic University

Nijmegen, Algol68 with refinements [6] has been used for
computer science education since 1977.

, and sy progr ing on a larger scale
together with abstract data types is well within the scope of the
first two Given this fr: k, problems can and
actually are attacked by puplls and students in their first
courses that were previously gable in the cl or
as exercises due to their complexity or size.

Two additional beneficial effects of refinements should not
go unmentioned: First, they are usually expressed in an
imperative or value oriented phrase on a certain abstraction
level; rephrasing the refinement name to its computational
effect on the same semantic level often eases the formulation
of associated pre- and postconditions. These must of course
then be worked out in terms of the objects used in that
refinement; they are naturally hed to the refi as

48 K. Kieine et al.

significant computational steps. A technique for hierarchical
verification of program correctness based on refinements can
be introduced this way. Secondly, program texts can quite
casily manipulated in sensible chunks, ¢.g. extended or
reshuffledusing a text editor. Thus exercises and little
programming projects can naturally grow and be reused in
following ones without such problems as exemplified by the
renumbering problem for BASIC programs.

There are some difficulties too:

@ Refinements are not a cure-all and can be abused. In the
first place, they are not substitutes for procedures.
Secondly, all data objects local to some range are global to
all refinements of that range; indescriminate lumping
together too much can bring their number beyond mentally
managable limits. As programs grow larger, the transition
from refinements to procedures for larger and more
selfcontained algorithms must be made. This is a question
of style and hindsight, which for a major part is only to
learn by experience of ones own.

® Our whole approach is based on verbalization, but the
literacy of pupils is often surprisingly low, leading to awful
monsters of refinement names or undecypherable
acronyms. The latter effect is often even worse for those
students that have previously picked up some BASIC or
FORTRAN like languages. The flooding of the market
with mic p offering minimal versions of these
dialects does real harm to education. At the more
clementatry level, many pupils do have difficulties (a) to
spell the same phrase correctly twice (application
and definition of a refinement), and (b) to feed it into a
typewriter keyboard. These are very down-to-carth
difficulties with education in general; all we can do is
repeatedly remind our fellow teachers.

® There is as yet no textbook employing the approach
presented and ELAN available in your local bookstore,
only an amelioration on top of Algol68 [6]. We have been
too busy with language implementation and setting up the
courses in various experimental ways in the past. But there
is hope; an introductory textbook in German and one in
Dutch are nearing completion.

These difficulties are for a part only temporal ones. They are
burdensome, but not real problems.

7. Conclusion

The retrospective question whether the development of
ELAN was worth the effort must for us undoubtedly be
answered positively. The step from teaching programming
languages to problem solving using a computer asks for
significant linguistic support for relatively small abstraction
increments. Such support was previously unavailable.
Modularity and use of strong abstraction are essential
subjects, and should be taught much earlier than is usually
done: a language to be used in education has to provide
simple, but adequate means for information hiding. Though
certainly not perfect in all respects, ELAN has met its goals.

Acknowledgements

C.H.A. Koster pionecred many of the ideas presented here. ELAN was
developed at Berlin Technical University by him and the authors with
support from DFG under grant KO-588/2. The cooperation with R.Hahn
and J.Liedtke (who also provided the first impl ion), Universi
of Bi are also iated. The di of a new p
compiler is sponsored by BMFT and NIXDORF Computer AG.

Bl

References

[1) B.Liskov, St.Zilles, Programming with abstract data types,
SIGPLAN Notices, vol.9#4 (April 74), pp.50-59

[2] G.Hommel, J.Jickel, S.Jzhnichen, K.Kleine, W.Koch,
C.H.AKoster, ELAN Sprachbeschreibung, Akademisch
Verlagsgesellschaft, Wiesbaden 1979 (in German)

[3] L.G.L.T.Meertens, Program text and program structure, IN:
Constructing quality software, P.G.Hibbard/S.A.Schuman (eds.),
IFIP WG2./WG2.4 conference, Novosibirsk, May 77, North
Holland Publishers, 1978, pp.271-283

[4] D.L.Pamnas, On v.h; a:i!eril to be used in decomposing systems into
modules, Communications ACM, vol.15#12 (Dec.72), pp.1053-1058

5] C.LH.A.l.(osler. Vifi‘bility and types, Conference on Data:
A Defi and S , Salt Lake City, 1976
SIGPLAN Notices, vol.11, special issue

[6] C.H.A.Koster, Th.A S; isch Pro met
Algol68, Deel I: Inleiding in de Inf ika, Kluwer, D 1978
(in Dutch)

@ Enquiries regarding the availability of ELAN should be
directed to Dr. Jahnichen at TU Berlin.

