SELECTED ANNOTATED BIBLIOGRAPHY ON

SOFTWARE ENGINEERING

Karl Kleine

)

Informatics Department
Faculty of Science
Nijmegen University, The Netherlands

Selected annotated bibliography on

Software Engineering

Karl Kleine (¥)

September T7

Katholieke Universiteit Nijmegen
Faculteit der Wiskunde en Natuurwetenschappen
Afdeling Informatica
Toernooiveld, Nijmegen, The Netherlands

(*) Fellow of the Faculty of Science of the KUN

;?izrgigii°8rapﬁy tries to be an introductory guide to the
for about 7 e 1 LA Engineering". This term has been in use
years, but there is no really satifying definition of

what it's really about We wi
. . will take
view and use the fOllowing ClaSSification:a more or less personal

. Books op SOftware.engineering, survey articles

A General

II Management of software projects
B Organization of software projects

_ C Costs and schedules estimation for software development

D Human aspects

I1I Technical issues

E Design issues

F Modularity, program decomposition schemes

G Specifications

H Programming methodology and 'Structured Programming'
i Program proving and verification

J Testing and debugging
K Programming errors and their causes
L Software production tools and aids
Programming languages

Documentation

o = =

Portability and adaptability

P Efficiency, benchmarking and optimization

Iv Miscellaneous

Q Curricula for software engineering education

General references

o)

Introduction 2

—— - —— - - -
- e e e e ———— ki

The criteria used for the selection were:

a) The main aspects listed above must be covered.

b) Significance and technical value.

Thi§ is of course a question of personal judgment of the
reviewer.

c) Restriction to 5 - 10 references per subject.
More would not be useful to the ordinary reader.

d) Beferences to bibliographies, surveys and tutorials were
included whenever available.

e) All items must be easily available.
This rules out a number of internal project reports, theses,
industrial documentation, etc.. The references cited here
are either a (chapter of a) book, an article in a technical
Jjournal or contained in some conference proceedings.

In the following, each section is preceeded by a not too 1long

review stating significance and subjects covered, and giving some
recommendations for the uninitiated reader.

Acknowledgements:

This bibliography originates from courses / seminars at Berlin
Technical University given by C.H.A.Koster, ° W.Koch,
W.Simonsmeier. P.Holager reviewed drafts and provided useful
comments.

Opportunity to (re-)read the material and prepare this survey was
granted by the Faculty of Science of the Katholic University of
Nijmegen by a fellowship to the author.

A Survey articles and collections -3

The term 'Software Engineering' was apparently coined by the
title of the NATO conference at Garmisch, Oct.68. The
proceedings of the conference [A1] and its follower [A2] mark the
beginning awareness of the problems in the real production of
large software systems. For this reason these books have their
definite place in the history of computer science, and are still
worth reading today. The material presented is somewhat dated,
and extensively rephrased elsewhere, but it does give a good

impression on the problems encountered in the production of
software.

In spring 72 an "Advanced course on Software Engineering" was
held at Munich Technical Univérsity. The material of that course
[A3] gives a fairly good, quite broad survey on software
engineering. A more recent publication of approximately the same
scope is [A6]. Parts of both books are referred to throughout
this bibliography.:

(A4, A5] are short survey papers. While [Al4] is more a 'keywords
and buzzwords' explanation paper, [A5] is a broad, yet concise
narrative of the problems and approaches of software
construction.

Conference proceedings of high interest are [AT7, A8, A9]. They
all contain a 1large number of important articles and are good
sources for further reference.

Recommended:
as short survey (e.g. start-up article for students): A5,
for a course on software engineering: A6, A3, A4

[A1] Ed: P.Naur, B.Randell,
Software Engineering,
Report on a conference sponsored by the NATO Science
Committee, Garmisch, Germany, Tth-11th Oct. 68,
NATO Scientific Affairs Division, Brussels, Jan.69

[A2] Ed: Buxton, B.Randell,
Software Engineering Techniques,
Report on a conference sponsored by the NATO Science
Committee, Rome, Italy, 27th-31th Oct. 69,
NATO Scientific Affairs Division, Brussels

([A1, A2] are not easy available; a combined reprint has
been announced by Petrocelli/Charter publishers.)

[A3] Ed: F.L.Bauer,
Software Engineering, An advanced course,
LNCS 30, Bpringer Yerlag, 75,
(formerly Lecture Notes in Economics and Mathematical
Systems 81, Springer, 73)

A Survey articles and collections 4y

[A4] D.T.Ross, J.B.Goodenough, C.A.Irvine,
Software Engineering: Process, Principles, and Goals,
Computer, vol.8#5, May 75 ‘

[A5] B.W.Boehm,
Software Engineering,

IEEE Transactions on computers, vol.C-25#12, Dec.T6,
pp.1226-1241 '

[A6]1 Ed: E.Horowitz,

Practical strategies for developing large software systems,
Addison-Wesley, 75

[A7] International conference on reliable software,
Los Angeles, April 75,
SIGPLAN Notices, vol.10#6, June 75
also: IEEE Cat.No. 75CHO940-7CSR

[A8] 2nd international conference on software engineering,
San Francisco, 76
IEEE Cat.No. 76CH1126-4C

[A9] Ed: P.G.Hibbard, S.A.Schuman,
Constructing quality software,
proc. IFIP-TC2 conference, Novosibirsk, May 77
North-Holland, to be published

B Organization of software projects ‘ 5

By now there is a slowly growing literature on the subject, but
we still do not know much about the subject. There ex1sts,
however, a large literature about project management in general,

which should not be disregarded. Software does not seem to be
that different, in most respects.

Most papers only descibe the phases a project goes through and
give some comments on the management needed. Examples are [B1,
B2, AS5]. They rely more or 1less on classical management
techniques.

For the organization of the teams actually designing and
producing the code, there are two new models, the chief
programmer team and the software family. The former is described
in [B4, B3] and related to design and coding techniques in [B5].
The software family is descibed in [D2, D1].

[B6] presents a database system for management support providing
services like status recording and surveys.

Recommended: B3

[B1] D.Tsichritzis,
Project Management,
in: A3, pp.374-384

_[B2] E.B:.Daly,
Management of software development,
IEEE Transactions on Software Engineering, vol.SE- 3#2

May 77, pp.229-242

[E3] Fa.P:Brooks,
The mythical man-month,
Addison-Wesley, 75

[B4] F.T.Baker,
Chief programmer team management of production programming,

IBM system journal, vol.11#1, 72

[B5] F.T.Baker,
Structured programming in a productlon programming
environment,
in: AT, pp.172-183
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#2, June 75, pp.241-252

[B6] H.Bratman,
Automated techniques for project management and control,

in: A6, pp.193-211

B Organization of software projects 6

- S - D D D G D D S D S D S D D G D G S D D G G S G SN S e S G S D S S S D M D D M D D S D G M G D D Em D WS G e

[B7] special issue on management of software projects,
Datamation, Dec.TY4
(contains excerpt from B3)

(p Costs and schedules estimation for software development T

In the last few years some papers have appreared that discuss the
effort needed for the production of 1large software systems.
Surveys for smaller systems are still missing. The most widely
known data concerns IBM's 0S/360, US military projects as SAGE,
and the NASA space flights. The latter both suffer somewhat in
generality because of peculiarities in US-government contracts.

[C1] presents some of the conclusions of an USAF study on their
computing facilities requirements for the 1980ties. It gives a
fairly good presentation of the problems and costs envisaged.
[C2] is the most complete source generally available at the
moment. Its size and large number of figures makes it somewhat
hard to read, and so [C3] is a welcomed condensed version of it,
well suited as course material. [C4] and [C5] treat manpower
planning. [C4] does this on the basis of a 30-20-50 rule
(duration of design, code, test phases) and complexity /
interaction estimates for subsystems. [C5] looks at lines of code
produced and its relation to programmer ability, problem area and
tools (mainly programming languages) used.

Recommended: C3, C1.

[C1] B.W.Boehm,
Software and its impact: A quantitative assessment,
Datamation, May 73, pp.48-59

[C2] R.W.Wolverton, ,
The cost of developing large-scale software, '
IEEE Transactions on computers, vol.C-23#6, June T4,
pp.615-636

[C3] R.W.Wolverton, -
The cost of developing large-scale software,

in: A6, pp.73-100,
(edited & compacted version of C2)

[C4] J.D.Aron
Estimating resources for large programming systems,
in: A2, pp.68-79

[C5] J.R.Johnson,
A working measure for productivity,
Datamation, Feb.77, pp.106-110

D Human aspects 8

The fact that software designers and programmers are humans in a
social environment has largely been neglected in the literature.
We have only found the three references given below, the team
structuring proposal known as 'chief programmer team' [B4], which
emphasizes the organizational side, and some recent research 1in
error proneness of e.g. features of programming languages (c.f.
section K on programming errors and their causes).

[D1] can only be characterized as outstanding, stressing the
human's part, and not the machine's. Weinberg cares for
programmer's attitudes and their relation to their job as well as
to the other members of their programming team. He advocates
'egoless' team programming. [D2] is a continuation of [D1] about
team formation and structure and its effects on a project.

[D3] reveals an important observation about the structure of
systems, Kknown as 'Conway's Law': The structure of a (software)
system is congruent to the design team structure.

Recommended: D1, D3

[D1] G.M.Weinberg,
The psychology of computer programming,
van Nostrand Reinhold Co., 71

[D2] D.Freedman, D.Gouse, G.M.Weinberg,
Organizing and training for a new software development
project - that big first step,
National Computer Conference 77, Dallas, AFIPS vol,46,
pp.255-259

[D3] M.E.Conway,
How do committees invent ?
Datamation, April 68, pp.28-31

E Design issues 9

Figures from [E1] show that 64% of the errors found ‘in software
during and after delivery result from the design phase, and only
36% from the coding. This drastic figure demonstrates the
importance as well as the common neglection of that early phase.

All tasks of the software have to be identified . in an
requirements analysis [ET7, E8] and subsystems and modules must be
defined and specified. Modules are treated in more - detail in
sections F and G. In this section we are interested in the way
to get to an internal program structure composed of subsystems /
modules, and how these modules form together a coherent system.
The two viewpoints of outer and inner appearance are often not

clearly separated. In most cases only the internal program
structure is discussed in the literature.

Of special interest is the amount of information about other
modules needed for the design and coding of a particular module.
Parnas discusses this aspect in several articles [E5, F1, G1] and
advocates -the ‘'information hiding principle', separating the
implementation of a module / subsystem from its outer appearance.

[E6, E7, E9] survey special techniques and tools aiding the
system design. ‘

Recommended: E5, E1, Eb6

[E1] B.W.Boehm,
Software design and structuring,
in: A6, pp.103-128

[E2] P.G.Neumann,
Toward a methodology for designing large systems and
verifying their properties,
4,GI-Jahrestagung, Berlin, Oct.TH4,
LNCS 26, Springer T4, pp.52-65

[E3] W.P.Stevens, G.J.Myers, L.L.Constantine,
Structured design,
IBM systems journal, T4, pp.115-139

[E4] B.Liskov,
A design methodology for reliable software systems,

FJcC 72, AFIPS vol.41, pp.191-199

[E5] D.L.Parnas,
Information distribution aspects of design methodology,

IFIP 71, TA-3, pp.26-30

[E6] B.Shneiderman,
A review of design techniques for programs and data,

SOFTWARE Practice and Experience, vol.6, 76, pp.555-567

E Design issues 10

[(E7T] D.T.Ross, K.E.Schoman jr.,

Structured analysis for requirements speeification,
IEEE Transactions on Software Engineering, vol.SE-3#1,

[E€] D.I.Ross,

Structured analysis (SA): A language to communicate ideas,
IEEE Transactions on Software Engineering, vol.SE-3#1,

[E9] J.F.Stay,
HIPO and integrated design,
IBM system journal, 76, pp.143-154

F Modularity, program decomposition schemes 11

Decomposition of a program into modules serves to reduce

complexity. (We will here disregard decomposition forced by
machine limitations.)

Parnas [F1, E5, G1] advocates the minimization of interfaces
between modules as criterium for a "good" modularization.

The hierarchical ordering of modules is discussed in [F2, F3,
F4]. Hierarchy imposes restrictions on the define-use relation
between modules. As each module defines new functions wusing
available old ones, this may lead to levels of abstraction; c.f.
[E4]. .

[F5] discusses the connection of modules, abstraction and data
type definition.

Recommended: F1, F3

[F1] . D.L.Parnas,
On the criteria to be used in decomposing systems into
modules,
CACM, vol.15#12, Dec.72, pp.1053-1058

[F2] G.Goos,
Hierarchies,
in: A3, pp.29-46

(F3] E.W.Dijkstra,
The structure of the "THE" multiprogramming system,
CACM, vol.11#5, May 68, pp.341-346 '

[F4] 0.J.Dahl, C.A.R.Hoare,
Hierarchical program structures,
in: Dahl, Dijkstra, Hoare: Structured programming,
Academic Press, 72

[F5] C.H.A.Koster,
Visibility and types,
Conference on data, Salt Lake City, 76,
SIGPLAN notices, vol.11, special issue

G Specifications 12

- e - - D - M W S D D D WS G G D D S ST D D G M N S G MR I S G e G G SN S S G S S D S ST D W G WP My M D G G ED D IS W D G G M e O e e

After having defined an overall structure of modules forming a
program, as discussed 1in sections E and F, we deal with the
specification of the modules and their connections to each other.

[G1] is a continuation of [E5, F1] now dealing with the details
of specification.

[G2] introduces a module interconnection language (MIL) to
describe the overall structure.

" [G3, GU4, G5] treat the specification of abstract data types. The

authors connect the module concept strongly with the concept of
abstract data types. - ’

Recommended: G2, G3, GI1

[G1] D.L.Parnas,
A technique for software module specification with
examples,
CACM, vol.15#5, May T2, pp.330-336

[G2] F.L.deRemer, H.Kron,
Programming-in-the-large versus programming-in-the-small,
in: A7, pp.114-121
reprint: IEEE Transactions on Software Engineering,
vol.SE-2#2, June 76, pp.80-86

[G3] B.Liskov, S.Zilles,
Specification techniques for data abstractions,
in: A7, pp.72-87
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#1, March 75, pp.T7-19

[G3] B.Liskov, S.Zilles,
Programming with abstract data types,
SIGPLAN Notices, vol.9#4, April 74, pp.50-59

[G5] J.Guttag,
Abstract data types and the development of data structures,
Conference on Data, Salt lake City, 76
CACM, vol.20#6, June 77, pp.396-404

Programming methodology and "Structured Programming" 13

Starting around '68 there has been a continuing controversy about
'structured programming'. The contributions can be classified

as.:

Mggims of the great gurus of programming methodology, as
Dijkstra, Hoare, Wirth [H1, H2, H3, H4, H5, H6].

The 'goto-debate', triggered by [H10] (though the issue was
already raised much earlier in [H11]), leading to such
statements as [H12] (compare answer [H13]). The issue 1is
now hopefully settled by [H14].

The practioneers, who learned to survive in an imperfect,
even hostile world by imposing standards on their work [H15,
H16, H17], or by incrementally modifying their programming
language to make it "structured" [H18, H19].

and finally people trying to provide some general guideline
(H20, . H21, H22], 1last not least for their own benefit, as
'SP' sells on the market [H8, H9]. (Jackson and Yourdon
both run software consultancy companies).

Recommended: H7, H3, H15

[H1]
[H2]
[(H3]
[H4]

[H5]

[(H6]

H.Wirth,
Program development by stepwise refinement,
CACM, vol.14#4, April 71, pp.221-227

P.Naur,
An experiment on program development,
BIT, vol.12, 72, pp.347-365

O0.J.Dahl, E.W.Dijkstra, C.A.R.Hoare,
Structured programming,
Academic Press, 72

E.W.Dijkstra,
A discipline of programming,
Prentice-Hall, 76

N.Wirth,
Systematic programming,

Prentice-Hall, 73
german edition: Systematisches Programmieren,

Teubner Studienbuecher, 72

N.Wirth,

Algorithms + Data = Program,

Prentice-Hall, 76

german edition: Algorithmen und Datenstrukturen,

Teubner Studienbuecher, 75

H Programming methodology and "Structured Programming" 14

[H7] special issue on programming,
Computing Surveys, vol.6#4, Dec.T4

[H8] special issue on 'structured programming',
COMPUTER, vol.8#6, June 75

[H9] special issue on 'structured programming',
Datamation, Dec.73

(H10] E.W.Dijkstra,
Goto statement considered harmful,
CACM, vol.11#3, March 68, (letter to the editor)

[H11] P.Naur,

Algol programming: goto statements and good algol style,
BIT, vol.3#3, 63, pp.204-208 .

[H12] S.W.Smoliar,
On structured programming,
CACM, vol.17#5, May T4, pp.294 (ACM forum)

[H13] D.Gries,
On structured programming - a reply to Smoliar,
CACM, vol.17#11, Nov.T74, pp.655-657 (ACM forum)

(H14] D.E.Knuth,
Structured programming with goto statements,
in: H7, pp.261-301

[(H15] B.W.Kerningham, P.J.Plauger,
The elements of programming style,
McGraw-Hill, 74
(excerpt in H7, pp.303-319)

[H16] C.Floyd,
Strukturierte Programmierung fuer COBOL - Anwender,
Hoffmann & Campe, T4
(in german)

[H17] A.van Gelder, . '
Structured programming in COBOL: An approach for
application programmers,

CACM, vol.20#1, Jan.77, pp.2-12

[(H18] L.P.Meissner,
On extending FORTRAN control structures to facilitate
structured programming,
SIGPLAN Notices, vol.10#9, Sept.T75, pp.19-30

[H19] D.J.Reifer,
The structured FORTRAN dilemma,
SIGPLAN Notices, vol.11#2, Feb.T76, pp.30-32

H Programming methodology and "Structured Programming" 15

[H20] J.D.Aron,
The program development process,
part I: The individual programmer,
Addison-Wesley, T4

[H21] M.A.Jackson,

Principles of program design,
Academic Press, 75

[H22] E.Yourdon,

Techniques of program structure and design,
Prentice-Hall, 75

I Program proving and verification 16

The hope that it might become practical to produce program units
with a mathematical proof of correctness, was imposed on the
computing community by Hoare in '69 in [I4].

A good state-of-the-art survey is given in [I1] (somewhat older:
[12]1). [I3]1 is a tutorial.

Verification by symbolic execution is another approach to this
treated in section J.

There is intense research activity in this area, even leading _to
axiomatic language definition [I6] and incorporation of exrensive
facilities for verification in programming languages [171].

However, up to now there are no practical results for real-life
software. A well readable critique of the approach is [I8].

Recommended: I1, I8

[I1] R.L.London,
A view of program verification,
in: A7, pp.534-533

[I2] B.Elpass, K.N.Levitt, J.Waldinger, A.Waksman,
An assessment of techniques for proving program
correctness,

Computing Surveys, vol.4#2, June 72, pp.97-14T

[I3] S.L.Hantler, J.C.King,
An introduction to proving the correctness of programs,
Computing Surveys, vol.8#3, 76

[I4] C.A.R.Hoare,
. An axiomatic basis for computer programming,
CACM, vol.12#10, Oct.69, pp.576-583

[I5] Z.Manna, S.Ness, J.Vuillemin, _
Inductive methods for proving properties of programs,
CACM, vol.16#8, Aug.T73, pp.H491-502

[I6] C.A.R.Hoare, N.Wirth,
An axiomatic definition of the programming language PASCAL,
Acta Informatica, vol.2, 73, pp.335-355

[I7] W.A.Wulf, R.L.London, M.Shaw,
An introduction to the construction and verification of
Alphard programs,
IEEE Transactions on Software Engineering, vol.SE-2i#4,
Dec.76, pp.253-265

Program proving and verification 17

[I8] A.S.Tanenbaum,

In defense of program testing or correctness proofs
considered harmful,

SIGPLAN Notices, vol.11#5, May 76, pp.64-68

J Debugging and testing 18

Testing a program means, running it to check that it meets its
specifications. Debugging is the activity of locating and fixing
errors in a .program. Both activities are closely related in
practical 1life, and the terms are often used as synonyms. To a
large extent they are still considered more an art than an
engineering procedure.

[J1, J2] provide overall surveys; [J1] contains an extensive

bibliography on the subject. [J6] presents the current state-
of-the-art of program test methods..

[J3, J4, J5] give guidelines resp. describe programs for the
construction of test beds and test inputs. From the program and
its specifications they deduce both typical test data, to
exercise all alternative control paths, as well as extreme values
that typically might escape proper treatment.

Testing by symbolic execution is a newer approach [J7], at 1least
in its mechanical form. It can be seen as an extention and
automation of the classical desk checking procedures, using
symbolic values instead of actual (numerical) test values. The
method 1s closely related to the program proving and verification
approach, c¢.f. section I; the objections raised there are also
valid here. .

[J8, J9, L5] survey tools available for debugging. [J8] presents
machine oriented facilities 1like core dumps and octal debug
packages. [J9] treats high-level 1language oriented tools for
execution profiling, source level dumps, etc.

The complete volume [A7] also contains worth-while articles on
testing and debugging.

Recommended: J6, J1, J9

[J1] Ed: W.C.Hetzel,
Program test methods,
Prentice-Hall, 73

[J2]1 P.C.Foule,
Debugging and testing,
in: A3, pp.278-318

[J3] J.C.Huang, .
An approach to program testing,
Computing Surveys, vol.7#3, Sept.73, pp.113-128

(J4] J.B.Goodenough, S.L.Gerhard,
Toward a theory of test data selection,
in: A7, pp.#493-510
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#2, June 77, pp.156-173

| Debugging and testing 19

[J5] C.V.Ramamoorthy, S-B.F.Ho, W.T.Chen,
On the automated generation of program test data,
IEEE Transactions on Software Engineering, vol.SE-2i#4,
Dec.76, pp.293-300

[J6] special section on testing,
IEEE Transactions on Software Engineering, vol.SE-2#3,
Sept.76, pp.194-231

[J7] J.C.King,
A new approach to program testing,
in: A7, pp.228-233

[J8] T.G.Evans, D.Darley,
Online debugging techniques, a survey,
FJCC 66, AFIPS vol.29, pp.37-50

[J9] E.Satterthwaite,
Debugging tools for high-level languages, :
SOFTWARE Practice and Experience, vol.2#3, 72, pp.197-217

K Programming errors and their causes 20

Some studies are available on the types, number and distribution
of errors programmers make and the effort needed to correct them.
In this respect the current section is related to section J on
debugging and testing, but the emphasis here is not how to find
and fix the bugs, but to investigate their origin and nature.

[K1, K2] are data collections on medium to 1large size assembly
programs. They are helpful in classifying what kind of errors are
actually made, e.g. wrong base registers, missing
initializations, etc.. They also discuss the distribution of
errors across modules, the way and effort needed to find them,
etc.

[K3] describes a controlled experiment in programming language
design wusing two small 1languages differing only in features
thought to influence error frequencies 1like declarations and
semicolon conventions. Students served as test persons. Though
insufficient in several respects, the idea of wusing experiments

of this kind in programming language design seems rather
important.

[K4] analyses (subtle) errors in well-known articles about
programming methodology and verification to show that these
methods alone cannot guarantee against failure.

Recommended: K4

[K1] M.L.Shooman, M.I.Bolsky,
Types, distribution and test and correction times for
programming errors,

in: A7, pp.347-357

[K2] A.Endres,
An analysis of errors and their causes in system programs,
in: A7, pp.327-336
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#2, June 75, pp.140-149

[K3] J.D.Gannon, J.J.Horning,
The impact of language design on the production of reliable
software,
in: A7, pp.10-21
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#2, June 75, pp.179-191

[K4] S.L.Gerhard, L.Yelowitz,
Observations in applications of modern programming

methodologies,
IEEE Transactions on Software Engineering, vol.SE-2#3,

Sept .76, pp.195-207

L ‘ Implementation tools and aids 21

An old saying tells: "Craftsmen are recognized by sharp tools."
This also applies to the software engineer. 1In addition to the
fundamental requirement of a programming language, treated in

more detail in section M, he needs editors, filing systems,
libraries, document formatting systems etc.

Surveys of such tools are given in [L1, L5]. A really excellent
treatment of tools, their characteristics and everyday practical
value for the programmer is given in [L2]. This book not only
presents the tools themselves, but builds them up step by step,
illustrating the program development process in a very
instructive manner. Programs for text manipulation in general
are treated in [L3] and for: administration of releases and
variants in [L4].

Recommended: L2

[L1] D.J.Reifer,
Automated aids for reliable software,
in: A7, pp.131-142

[L2] B.W.Kerningham, P.J.Plaugher,
Software tools, -
Addison-Wesley, 76

[L3] A.v.Dam, D.E.Rice,
Online text editing: a survey,
Computing Surveys, vol.3#3, Sept.71, pp.93-114

[L4] M.J.Rochkind,
The source code control system,

IEEE Transactions on Software Engineering, vol.SE-1#4,
Dec.75, pp.364-370

[(L5] B.W.Boehm, R.K.McClean, D.B.Urfrig,
Some experience with automated aids to the design of large
scale reliable software,
in: A7, pp.105-113,
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#1, March 75, pp.125-133

(L6] C.V.Ramamoorthy, S.F.Ho,
Testing large software with automated software evaluation
systems,
in: A7, pp.382-394

M "~ Programming languages 22

The programming language is a fundamental tool for the software
engineer, resp. programmer, and has been paid high attention in
nearly all discussions on software engineering.

(M1, M2, M3, M4] form some kind of an encyclopedia on the
subject. [M1, M3] are catalogs with short descriptions, whereas
[M2] treats concepts of some commonly used programming languages.
[M4] gives a nice account of the history of .programming
languages.

[M5, M6, MT] discuss language features for 'heavy duty programs'.
[M7, M8] treat machine-near programming languages needed e.g. for
writing operating systems or real-time systems.

[M8, M9, A9 (in part)] are proceedings -of conferences dealing
with programming language design. A (personal) review, resp.
guideline for programming language design is given by Wirth in
[M10], stressing simplicity and uniformity.

Uniformity and outer appearances of language constructs are
further discussed in [M11].

Recommended: M4, M7, M10

[M1] J.E.Sammet,
Programming languages: history and fundamentals,
Prentice-Hall, 69

[M2] M.Elson,
Principles of programming languages,
SRA, 76

(M3] J.E.Samment,
Roster of programming languages for T4-75,
CACM, vol.19#12, Dec.T76, pp.655-669

[M4] P.Wegner, |
Programming languages - the first 25 years,
IEEE Transactions on computers, vol.C-25#12, Dec.76,
pp.1207-1225

[M5] G.Goos,
Language characteristics: programming language as a tool in
writing system software,
in: A3, pp.47-69

[M6] G.Goos,
Systemprogrammier sprachen und strukturiertes Programmieren,
in: Hackl (ed.), Programming methodology,

LNCS 23, Springer 75

Programming languages

[M7]

(M81

[(M9]

[M10]

[(M11]

W.A.Wulf,

Issues in higher-level mach

ine-oriented languages,

Ed: W.L.v.d.Poel, L.A.Maarsen,
Machine-oriented higher-level languages,

proc. of an IFIP-TC2 conference, Trondheim, Aug.T73,
North-Holland, 74

Ed: D.B.Wortman,

proc. ACM conference on language design for reliable
software,

SIGPLAN Notices, vol.12#3, March 77
some articles in: CACM, vol.20#8, Aug .77, pp.539-595

N.Wirth,

On the design of programming languages,
in: IFIP T4, North-Holland, 74, pp.386-393

C.M.Geschke, J.G.Mitchell,

On the problem of uniform references to data structures,
in: A7, pp.31-=42 .
reprint: IEEE Transactions on Software Engineering,
vol.SE-1#2, June 75, pp.207-219

N Documentation 24

Software documentation is an all too often neglected activity.
The material available mirrors this situation:

[N1] gives a short survey. [N2] points out the needs of the
user. [N3] is just a forms cookbook. (N4, N5] present graphical

rephrasing styles for code. [N6] proposes that the neglection of
documentation be attacked by organizational procedures.

Recommended: N1

[N1] G.Goos,
Documentation,
in: A3, pp.385-394

[N2] N.Newman, T.Lang,
Documentation for computer users, ’
SOFTWARE Practice & Experience, vol.6#3, 76, pp.321-326

[N3] D.A.Walsh,

A guide for software documentation,
McGraw-Hill, 69

[N4] N.Chapin,
Flowcharting with the ANSI standard: a tutorial,
Computing Surveys, vol.2#2, 70, pp.119-146

[(N5] I.Nassi, B.Shneiderman,

Flowchart techniques for structured programming,
SIGPLAN Notices, vol.8#8, 73

[N6] R.C.Fitzpatrick,
Making documentation painless,
Datamation, Aug.77, pp.62-68

0 Portability and adaptability 25

Accord?ng to [02] the term portability means the ease (or lack of
it) with which a program may be moved from one machine to
another. The term adaptability refers to the ease with which it
can be changed to cater for different environments or functional
changes. In this sense only portability is discussed in the
papers cited. Adaptability is generally aimed at by using high-
level 1languages (ec.f. section M), even in machine-near
programming [M8].

There are two schools:

- Abstract machine modelling, inventing ‘'virtual hardware'
particular suited for the task at hand, and writing the
software in this language. The virtual machine instructions
must then be translated into the code of the real hardware
at hand. Macro expansion is wusually used for that task.
Waite and Poole [02, 03, O4] pioneered this direction.

- The other approach to the problem is to wuse: high-level
programming languages. That these are not as portable as
often claimed (especially FORTRAN) is nicely illustrated by
[05]. Again two approaches:

- Living in an imperfect world with language dialects, word
sizes dependencies, etc., the NAG library [06], a large
subroutine 1library for numerical computations, is
preprocessed for each machine / compiler to produce
appropriate variants.

- The US Department of Defence (DOD) is in a much stronger
position: They prepared a standard acceptance test for
COBOL compilers [07]. By that de-facto standard® imposed
on the market COBOL compilers and programs processed by
these compilers behave much more wuniformly than e.g.
FORTRAN systems.

A broad survey on all these approaches is given in [01].
Last but not least, a '"software porter' usually spends a high
percentage of his time just converting character codes, fiddling
strange tape formats and job contol languages. Some hints for
dealing with these aspects of porting are given in [08].

Recommended: 01

[01] Ed: P.J.Brown,
Software Portability, An advanced course,
Cambridge University Press, 77

[02] P.C.Poole, W.M.Waite,
Portability and adaptability,
in: A37 pp-183"‘277

0 ~Portability and adaptability 26

[03] M.C.Newey, P.C.Poole, W.M.Waite,

Abstract machine modelling to produce portable software -
a review and evaluation,

SOFTWARE Practice & Experience, vol.2, 72, pp.107-136

(O4] S.S.Coleman, P.C.Poole, W.M.Waite,
The mobile programming system, JANUS,
SOFTWARE Practice & Experience, vol.ld#1, T4, pp.5-23

[05] M.A.Babin,

Portability - some experience with FORTRAN,
SOFTWARE Practice & Experience, vol.6, 76, pp.393-396

[06] S.J.Hague, B.Ford,
Portability - prediction and eorrection,
SOFTWARE Practice & Experience, vol.6#1, 76, pp.61-69

[07] H.T.Hicks,

The Air Force COBOL validation system,
Datamation, Aug.69, pp.73-81

[08] W.M.Waite,
Hints on distributing portable software,
SOFTWARE Practice & Experience, vol.5#3, 75, pp.295-308

P Efficiency and optimization 27

Striving for efficiency in an early phase of program development
usually does much harm to the software produced. From Knuth [P1]
.we now know that in most cases 90% of the running time of a
program 1is spend in less than 10% of its code. Time efficiency
may therefore best achieved by first having a correct clean
solution, then observing its dynamic behaviour (e.g. by tools as
(P2, J8]) and reworking the ecritical parts. An even better
solution 1is to leave this (partially) to an optimizing compiler
[(P4]. A good description of the process (and some advise on how
to proceed) is given in [H15].

A completely different task is to measure (and maximize) the
performance of a computer system as a whole. This is treated in
the surveys [P5, P6].

Recommended: P1, P3

[P1] D.E.Knuth,
An empirical study of FORTRAN programs,
SOFTWARE Practice & Experience, vol.1#2, 71, pp.105-133

[P2]' G.Lyon, R.B.Stillman,
Simple transforms for instrumenting FORTRAN decks,
SOFTWARE Practice & Experience, vol.5#4, 75, pp.347-358

[P3] D.B.Loveman,
Program improvement by source-to-source transformation,
JACM, vol.24#1, Jan.T7, pp.121-145)
1st version: 3rd ACM symposium on principles of programming
languages, Jan.76

[P4] P.B.Schneck, E.Angel,
A FORTRAN to FORTRAN optimizing compiler,
Computer Journal, vol.16#4, pp.322-330

[(P5] H.C.Lucas,
Performance evaluation and monitoring,
Computing Surveys, vol.3#3, Sept.71, pp.79-91

[P6] C.C.Gottlieb,
’ Performance measurement,
in: A3, pp.464-491

SOftwarg engineering is a difficult subject to teach at a
univer51ty. Basic ingrediences of real-life projects can hardly
be appreciated by the students. Consider for instance the sheer
size and complexity of systems involved, the management problems

the cost gnd schedules competition in the software market. A
more basic problem is that we do not yet have any satisfactory

complete methodology, resp. professional image of a ‘'software
engineer' to teach. ;

A basis for any new curriculum is the ACM curriculum [Q1, Q21].

[Q3,_ Q4, Q5] are _attempts towards a software engineering
curriculum, [QU4] 'giving the- essentials, whereas [Q5] is a

transscript of a workshop with positions and discussions from
both university and industry.

EQ6] describes a term project which was very successful in
illustrating the software engineering process.

Recommended: Q4, Qb6

[Q1] ACM curriculum committee on computer science,
Curriculum 68 - recommendations for academic programs in
computer science,
CACM, vol.11#3, March 68, pp.151-197

[Q2] ACM curriculum committee on computer science,
(Ed: R.H.Austing, B.H.Barnes, G.L.Engel)
A survey of the literature in computer science educ¢ation
since curriculum 68,
CACM, vol.20#1, Jan.77, pp.13-21

[Q3] P.Freeman, A.I.Wasserman, R.E.Fairley,
Essential elements of software engineering education,
in: A8, pp.116-122

[Q4] A.I.Wasserman, P.Freeman,
Software engineering concepts and computer science

curricula
COMPUTER, June 77, pp.85-91

[Q5] Ed: A.I.Wasserman, P.Freeman,
Software engineering education,
proc. of an interface workshop,
Springer, 76

[Q6] J.J.Horning, D.B.Wortman,
Software hut: a computer program engineering project in the
form of a game,
IEEE Transactions on software engineering, vol.SE-3{#4,

July 77, pp.325-330

General references 29

The following journals regularly contain articles on software
engineering:

a)
b)

c)

d).

e)
)
g)
h)

IEEE Transactions on Software Engineering
SOFTWARE - Practice and Experience
Communications of the ACM (CACM)

COMPUTER

Datamation

Computing Surveys

SIGPLAN Notices

Computing Reviews (indirectly, as it is a reference journal
for short reviews of new publications) »

Other bibliographies on the Ssubject were prepared by students at

the

University of Toronto, Canada, Computer Systems Research

Group:

An annotated bibliography on computer program engineering

3rd edition, CSRG-54, April 75
Lth edition, CSRG-69, May 76
5th edition, CSRG-80, May 77

